Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Bats harbor diverse intracellular Bartonella bacteria, but there is limited understanding of the factors that influence transmission over time. Investigation of Bartonella dynamics in bats could reveal general factors that control transmission of multiple bat-borne pathogens, including viruses. We used molecular methods to detect Bartonella DNA in paired bat (Pteropus medius) blood and bat flies in the family Nycteribiidae collected from a roost in Faridpur, Bangladesh between September 2020 and January 2021. We detected high prevalence of Bartonella DNA in bat blood (35/55, 64%) and bat flies (59/60, 98%), with sequences grouping into three phylogenetic clades. Prevalence in bat blood increased over the study period (33% to 90%), reflecting an influx of juvenile bats in the population and an increase in the prevalence of bat flies. Discordance between infection status and the clade/genotype of detected Bartonella was also observed in pairs of bats and their flies, providing evidence that bat flies take blood meals from multiple bat hosts. This evidence of bat fly transfer between hosts and the changes in Bartonella prevalence during a period of increasing nycteribiid density support the role of bat flies as vectors of bartonellae. The study provides novel information on comparative prevalence and genetic diversity of Bartonella in pteropodid bats and their ectoparasites, as well as demographic factors that affect Bartonella transmission and potentially other bat-borne pathogens.more » « less
-
null (Ed.)Nipah virus is a bat-borne paramyxovirus that produces yearly outbreaks of fatal encephalitis in Bangladesh. Understanding the ecological conditions that lead to spillover from bats to humans can assist in designing effective interventions. To investigate the current and historical processes that drive Nipah spillover in Bangladesh, we analyzed the relationship among spillover events and climatic conditions, the spatial distribution and size of Pteropus medius roosts, and patterns of land-use change in Bangladesh over the last 300 years. We found that 53% of annual variation in winter spillovers is explained by winter temperature, which may affect bat behavior, physiology, and human risk behaviors. We infer from changes in forest cover that a progressive shift in bat roosting behavior occurred over hundreds of years, producing the current system where a majority of P. medius populations are small (median of 150 bats), occupy roost sites for 10 years or more, live in areas of high human population density, and opportunistically feed on cultivated food resources—conditions that promote viral spillover. Without interventions, continuing anthropogenic pressure on bat populations similar to what has occurred in Bangladesh could result in more regular spillovers of other bat viruses, including Hendra and Ebola viruses.more » « less
An official website of the United States government
